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Laboratoire de Physique Théorique, Universit́e Louis Pasteur, 3–5 rue de l’université, 67084
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Abstract. We investigate the XY model with ferromagnetic nearest and antiferromagnetic next-
to-nearest neighbours couplings (ANNNXY model). We formulate the study of both phases of
the model in terms of different Coulomb gas models. The non-frustrated ferromagnetic phase
is thus transformed into a usual Coulomb gas with one species, whereas the frustrated phase is
translated into a Coulomb gas with three species interacting with each other in an anisotropic
lattice. We then generalize the Kosterlitz–Thouless renormalization group equations for both
phases by treating the Ising and Kosterlitz–Thouless order parameters in an independent way.
This enables us to discuss the nature of the transition (Ising and (or) Kosterlitz–Thouless) in the
frustrated phase.

1. Introduction

Since the discovery of high-temperature superconductivity, a considerable interest has
emerged in two-dimensional frustrated antiferromagnetic systems. In particular adding
frustration could be a way to describe how the now widely accepted long-range order in
two-dimensional Heisenberg antiferromagnets could be destroyed, leading to a spin-liquid
state [1–3]. One way to induce frustration is to add competing interactions between nearest
neighbours (NN) and next-to-nearest neighbours (NNN) and even further [4]. Frustration
gives rise to surprising and subtle effects and often creates very rich phase structures.

To understand better the role played by frustration, some recent Monte Carlo simulations
have been made in three and four dimensions with different spin models (Ising, Potts,
Heisenberg) described by the following Hamiltonian [5, 6]

H = J1

∑
〈i,j〉

SiSj + J2

∑
〈〈i,l〉〉

SiSl (1)

where〈i, j〉 corresponds to NN, and〈〈i, l〉〉 to NNN. The phase diagrams so obtained present
rather similar phase structures: namely, the addition of a frustrating NNN antiferromagnetic
(AF) interaction to a ferromagnetic NN interaction often creates several AF phases, for
which the AF order appears first in one dimension, then in two dimensions, and so on,
thereby breaking rotational invariance [5].

In this paper, we study analytically the two-dimensional XY model with ferromagnetic
NN and antiferromagnetic NNN interactions on a square lattice also defined by (1) (that we
can call the ANNNXY model or a two-dimensionalJ1 − J2 XY model). Because of the
U(1) symmetry, the simple XY model has singular solutions, the vortices, that will disorder
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the system, leading to the famous Kosterlitz–Thouless (KT) phase transition [7–9]. This
J1−J2 XY model has two distinctive phases, a non-frustrated one with ferromagnetic order
and a frustrated one with a particular AF order [10]. We will study the influence of vortices
in both phases by means of the real-space renormalization group [8]. The frustrated phase
is the most complex one, because spin waves favour a collinear ordering (this constitutes
a simple example of ‘order by disorder’ [11, 10]). An Ising order parameter thus appears
dynamically in the model. The symmetry group will beZ2×U(1). A similar situation has
already been encountered in the fully frustrated XY model on a square lattice, and in the
AF triangular XY model [12, 13]. Both models exhibit specific critical behaviours with an
Ising and KT transition at the same point.

The paper will be organized as follows. In section 2, we study the two-dimensional
J1 − J2 XY model with the help of the Villain transformation [14] and translate it into a
generalized Coulomb gas language. Because of the Villain approximation, the Ising and KT
order parameters are decoupled. In section 3, we derive the generalized KT renormalization
group equations. We show in particular, that the usual KT fixed point can be destabilized
by frustration in the AF phase. It enables us to propose different scenarii concerning the
nature of the phase transition in this ANNNXY model. This analysis suggests that only
one transition, essentially dominated by the Ising order parameter, is probable. Finally, in
section 4, we give a summary and conclude with speculative remarks concerning possible
extensions of these results, in particular, when some disorder is added.

2. Coulomb gas description of the XY model with competing interactions

The two-dimensionalJ1 − J2 XY model on a square lattice is defined by the following
Hamiltonian

H = J1

∑
〈x,x ′〉

cos(θx − θ ′x)− J2

∑
〈〈x,x ′〉〉

cos(θx − θ ′x). (2)

If J2 = 0 this model describes the usual XY model and leads to the well known KT phase
transition induced by vortices [7–9]. WhenJ2 6= 0, this extended XY model already exhibits
a non-trivial ground state at classical level [10, 1]. Let us denoteη = J2/J1. Whenη < 1

2

the ground state is the standard ferromagnetic order, whereas ifη > 1
2 the system breaks

up into two squares (but this time(
√

2×√2)) sublattices with independent AF order (see
figure 1) [10]. The valueη = 1

2 is a strong singularity (i.e. a Lifshitz point) where both
states area priori possible but also any order states that satisfies

∑
plaquetteSi = 0. We have

the same Lifshitz point with Heisenberg spins.
Let us now study the influence of vortices when temperature is raised. As the two

ground states described above are strongly different, we have to compute their excitations
independently.

2.1. The non-frustrated phase:η < 1
2

Consider the Hamiltonian (2) in the ferromagnetic phase. By the Villain transformation
[14], valid at low temperature,

exp(β cos(θ − θ ′)) ∼ C
+∞∑

m=−∞
exp

(
−β

2
(θ − θ ′ − 2πm

)2

(3)
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Figure 1. The two different classical vacuum configurations: the usual ferromagnetic one, and
the one with two independent antiferromagnetic sublattices. Here we consider an arbitrary angle,
φ, between the two sublattices.

the partition function can be written as a sum of Gaussians

Z =
(∏

x

∫ +π
−π

dθx

)
exp

(
βJ1

∑
〈x,x ′〉

cos(θx − θx′)− βJ2

∑
〈〈x,x ′〉〉

cos(θx − θx′)
)

=
(∏

x

∫ +π
−π

dθx

) ∑
{nµx},{ñαx}

exp

(
−βJ1

2
A(θx, nµx, ñαx)

)
(4)

where,

A(θx, nµx, ñαx) =
∑
x,µ

(θx+eµ − θx − 2πnµx)
2− η

∑
x,α

(θx+eα − θx − 2πñαx)
2. (5)

In this expression, we have used a Villain transformation for both cosine terms following
one of the prescriptions given in [15]. In these formulae,µ = 1, 2, α = 1, 2. eµ andeα
indicate respectively the directionsi, j and(i+ j), (j− i). The term{nµx}, {ñαx} means we
sum in each vertex of the lattice, over four integer link variables (a link is partaken by two
vertices, and we have eight links per vertex.

This expression is valid only forη < 1
2 where the classical vacuum is ferromagnetic†,

so that the actionA(θx, nµx, ñαx) is bounded from below. When we switch off the link
variables, we recover the spin-wave Hamiltonian. In fact we could have applied the Villain
transformation directly on the spin-wave action (as it is often the case in lattice-gauge
theories when one wants to include vortex-like contributions).

There is an apparent problem with the link term−4π2η(ñαx )
2 in the action (5). After

the integration overθx , the problem no longer survives because the action is bounded
from below. We introduce the lattice derivatives∇µθ(x) = θ(x + µ) − θ(x) and
∇̃αθ(x) = θ(x + α) − θ(x), which are modified in (5) by the gauge-link variables. The
action (5) is gauge invariant through

θ(x)→ θ(x)+ 2πk(x)

nµx → nµx −∇µk(x)
ñαx → ñαx − ∇̃αk(x). (6)

† The domain of validity of the Villain approximation for more complex spin structures is not yet properly
established.
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Althoughθ(x) andnµx , ñαx appear as independent variables, they are correlated in the partition
function because of this gauge invariance. The problem now is to find the dual form of the
action, namely to write it in a Coulomb gas form. When the NNN interaction is not present,
the vortices defined bymx = εµν∇µnνx (εµν being the two-dimensional antisymmetric tensor)
play a role analogous to charges (they are also the natural gauge-invariant variables on the
dual lattice). When we perform the Gaussian integrals overθ , thenZ = ZSW ∗ ZV where
ZSW represents the spin-wave part

ZSW =
∫
Dθ exp

[
−β

2

∑
x,µα

[(∇µθ(x))2− η(∇̃αθ(x))2]

]
(7)

andZV the vortex part

ZV =
∑
{nµx }{ñαx }

exp[−2π2βnµx [δµν −∇µP−1∇ν ]nνx

+4π2ηnµx [∇µP−1∇̃α]ñαx − 2π2η2ñαx [δαβ − ∇̃αP−1∇̃β ]ñβx ]. (8)

P−1 indicates the propagator defined on the lattice by its Fourier transform,

(P−1)(k) =
(∑

µ

4 sin2 kµ

2
−
∑
α

4η sin2 kα

2

)−1

. (9)

The corresponding real-space interactionV(x) can be computed at a long distance in
the usual way (see similar calculations in [16]) and leads to

V(x) ≈ −1

2π

1

1− 2η
ln

(
4|x|eγ

√
1− 2η

2

)
. (10)

The propagator is only defined forη < 1
2, i.e. as could have been guessed. It indicates

clearly the presence of a new phase forη > 1
2, dominated by antiferromagnetism. The

problem now is to writeZV in terms of independent gauge-invariant vortices. After the
Gaussian integrations and standard manipulations, the vortex action can be written as,

A(nν, ñα) =
∑
x

−2π2β(m1(x)P−1m1(x)+ η2m2(x)P−1m2(x)+ ηmµα3 (x)P−1m
µα

3 (x))

(11)

with m1(x) = εµν∇µnνx the usual vortex of the XY model,m2(x) = εαβ∇̃αñβx a vortex
defined on the diagonal sublattices and finallymµα3 (x) = ∇̃αnµx − ∇µñαx corresponds to
four vortices built by mixing the two lattices. Globally we have three different geometrical
plaquettes representing these vortices: the square 1× 1 associated with vortices on the
original ferromagnetic lattice, the square

√
2×√2 associated with vortices on the diagonal

sublattices, and(
√

2×1) parallelogram plaquettes associated with vortices on mixed lattices.
At each vertex, there are four link variables submitted to a gauge invariance. Once the gauge
is fixed (n1

x = 0 for example) only three independent link variables survive. The ambiguity
with the term−4π2η(ñαx )

2 in the action has totally disappeared after integration, and the
action is now manifestly bounded from below.

The dual Coulomb gas form of the model must have only three point-like, independent
vortices. The three vortices,mi , defined on edges are non-local so it is difficult to check
their independence. To solve this problem, we defined three local variables, the triangle



Ising transition in the classical ANNNXY model 2657

plaquettes, which are geometrically independent:

t1(x) = n1
x + n2

x − ñ1
x

t2(x) = −n2
x − nx+j + ñ1

x

t3(x) = n1
x − n2

x − ñ2
x+i.

(12)

In terms of these new variables, the action (11) then reads

A =
∑
x 6=x ′
−2π2β((1− 2η)2(t1(x)+ t2(x))V(x − x ′)(t1(x ′)+ t2(x ′))+ · · ·)

=
∑
x 6=x ′

πβ(1− 2η)m1(x) ln |x − x ′|m1(x
′)+ · · · (13)

becausem1(x) = (t1(x) + t2(x)). The ellipses represent here terms liketi(x)∇µP−1tj (x)

or ti(x)∇̃αP−1tj (x) with 1 6 i, j 6 3. These terms behave at large distances as
ti(x)

1
|x−x ′| tj (x

′), and can be neglected in comparison with the logarithm Coulomb interaction
(13). They may play a role close to the Lifshitz point, where the spin waves are very soft. In
the renormalization-group procedure they are irrelevant in the infrared region. Consequently,
we find the usual vortex contribution to the partition function, the inverse temperature is
just multiplied by a factor(1− 2η). This result is not surprising at all: indeed a formally
similar derivation could have been done with a NNN ferromagnetic interaction; and we
know by universality arguments that the long-wavelength behaviour remains unchanged, so
the only excitations which deviate from usual vortices could just have local effects [15]. It
is exactly what was shown above but with a NNN antiferromagnetic interaction which does
not change the nature of the ground state.

2.2. The frustrated phase:η > 1
2

Fro η > 1
2, the ground state now consists of two square(

√
2× √2) sublattices, that can

be labelled (or coloured) by 1 and 2, each with an AF order whose orientation is defined
by 21 and22 (see figure 1). Because the ground-state energy (E0 = −4NJ2, whereN
is the number of sites) is independent ofJ1, a non-trivial degeneracy appears in the angle
8 = 21 − 22. As was proved by Henley [10], this degeneracy is broken by spin-wave
excitations that favour collinear alignment. It is a simple example of ‘order by disorder’
[11]. In that case, rotational invariance is also broken and there is thus AF order in one
direction and ferromagnetic order in the orthogonal one. This does not violate the Mermin–
Wagner theorem [17] because the continuous degeneracy is replaced by a discrete Ising-like
order parameter. Such an ordering was already observed numerically in higher-dimensional
models described by equation (1) [6] as was mentioned in the introduction. Whether this is
also an ‘order by disorder’ effect remains an open question. Nevertheless, such an analysis
takes only spin waves into consideration.

We want now to include the vortices in the action to see their effects. In the following,
we considerφ, the angle between two NN spins, as a parameter independent of the position.
To get a Villain treatment for such a ground state, the usual strategy is to apply the Villain
transformation to the spin-wave action [15]. Yet, as two spins separated with a length
2a have the same orientations, it will be easier to first map the model on a square lattice
(2× 2) with ferromagnetic interactions, but now with two spins, 1 and 2, per vertex. We
can directly apply the result of Chandraet al [2] available in our case. After the gradient
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expansion of the classical energy, the action on this new lattice can be written as

A = 2J2

2T

∑
x

[ ∑
i=1,2

(∇θi)2+ 2λ(∇xθ1∇xθ2−∇yθ1∇yθ2)

]
(14)

where we have definedλ = J1 cosφ
2J2

.
Notice that, if we do the Gaussian integration overθi , we recover the quadratic

approximation of the result of Henley [10], namely

ASW(φ) = constant−
∫

d2q

(2π)2
log[2J2(q

2
1(1− λ)+ q2

2(1+ λ))]

∼ constant− 0.32

(
J1 cos(φ)

2J2

)2

. (15)

The integration overq shows that spin waves select states with cos2(φ) = 1, thus a collinear
ordering.

We now have to include the periodicity ofθi variables in the spin-wave action (14) by
applying the Villain transformation on each quadratic term. If we do that directly, we will
obtain, after integration overθi , a global action representing the spin-waves energy (which
behaves as cos2(φ)), and a vortex action totally independent of local spin-wave effects. This
method does not enable us to see how the Ising order parameter emerges and competes with
the KT order parameter. Hence, following Chandraet al [2], we include a local quadrupole
coupling term

Ac = −γ
(
J1

2J2

)2 ∫
d2x(θ1− θ2)

2 (16)

in the action (14) (withγ = 0.32) corresponding to local spin-wave effects. The coefficient
of this coupling term is defined from (15). After diagonalizing the bilinear form inθi ,
we obtain a massive scalar action plus a massless one, where the 2π periodicity has to be
included by means of the Villain transformation. The partition function then reads

Z =
∫
Dθ1Dθ2

∑
{nµ2 (x),lµ2 (x)}

exp−[AIsing+AV] (17)

with

AIsing =
∑
x

J2

2T
[(1− λ)(∇xθ1)

2+ (1+ λ)(∇yθ1)
2] + γ

(
J1

2J2

)2

θ2
1 (18)

the massive action corresponding to the Ising order parameter, and

AV =
∑
x

J2

2T
[(∇µθ2− 2πnµ2 (x))

2+ λ[(∇xθ2− 2πlx2)
2− (∇yθ2− 2πly2)

2]] (19)

the massless action, where links variables have been included. In the vortex action (19),
we have four links per vertex:nµ2 (x) corresponds to antiferromagnetic bonds, andl

µ

2 (x)

to ferromagnetic bonds. It is important to have applied the Villain transformation for both
terms in the action (19), in order, first, to keep traces of vortices associated to ferromagnetic
interactions (1×1 plaquettes in the original lattice), and second, to have a sufficient number
of renormalization group (RG) equations to renormalize all coupling constants (T andλ).
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Note that we have gauge-invariance conditions similar to (6) in the Villain action (19)

θ2(x)→ θ2(x)+ 2πk2(x)

n
µ

2 (x)→ n
µ

2 (x)−∇µk2(x) (20)

l
µ

2 (x)→ l
µ

2 (x)−∇µk2(x).

So, at each vertex, three degrees of freedom survive.
The main difficulty is to transform the action (19) into a Coulomb gas one. After some

tedious algebra detailed in appendix A, we show that the vortex action is described by

AV = −2π2βJ2

∑
x

(1+ λ)N(x)P−1N(x)+ λ(1− λ)L(x)P−1L(x)

+2λN(x)P−1L(x)− 2λ(N(x)+ L(x))P−1M(x) (21)

where the propagator,P−1 = [(∇x)2(1 + λ) + (∇y)2(1 − λ)]−1, corresponds in fact to
the usual one but on an anisotropic lattice.N(x) = εµν∇µnν2 are the vortices on the AF
diagonal sublattices (

√
2× √2 plaquettes),L(x) = εµν∇µlν2, the vortices on the normal

ferromagnetic lattice (1×1 plaquettes), andM(x) = ∇1n2
2−∇2l12, the vortices on the mixed

sublattices (1×√2 plaquettes). The vortex action (19) is thus transformed on a Coulomb gas
action in anisotropic space with three charge species interacting with each other. The charge
is conserved inside each species. Notice that the resulting action is far more complicated
than the one describing the non-frustrated phase as expected. Of course, such a treatment
decouples both order parameters. We will discuss the validity of this approximation in the
next section. Let us first extend the KT renormalization group equations to the actions (13)
and (21).

3. Generalized KT equations and phase structures

There are many ways to find the RG trajectories for the standard XY model. First, one
can directly use the language of Coulomb gas by introducing a dielectric constant and
the polarizability of the dipole pair (see for example [18]). The second way is to notice
that the XY model with external fields is dual to the sine–Gordon model, and then to use
diagrammatic expansions. Because of its standard perturbative aspect, this method enables
us to compute higher-order corrections to the KT equations [19]. Thirdly, a direct real-space
renormalization group according to Kosterlitz can be done by arguing that neighbouring
vortices with opposite charges have only a short-range effect [8].

3.1. Extension of the KT equations

In this paper, we follow this third method. For the non-frustrated phase, the partition
function yields using (10) and (13):

Z(β, η, z1)=ZSW

∑
{m1(x)}

exp

[
πβ(1−2η)

∑
x 6=x ′

m1(x)m1(x
′) log

|x−x ′|
a
+logz1

∑
x

m1(x)
2

]
(22)

wherea is the lattice constant andz1 the fugacity one adds to control the vortex number. We
have seen that the ferromagnetic phase has exactly the same form as the usual XY model
with a temperaturẽβ = (1− 2η)β. In this phase, the ratioη = J2

J1
does not renormalize

separately, because it is coupled to totally irrelevant terms (see equation (13)) and so can
be considered as a parameter.
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Figure 2. The RG flow for the non-frustrated phase for an arbitrary value of the parameterη.
We have the usual flow of the XY model except thatTKT is scaled by a factor(1− 2η).

The RG equations are then the usual ones:

dβ̃

dl
= −4π3β̃2z2

1

dz1

dl
= −z1(πβ̃ − 2).

(23)

The flow for z1 is represented in figure 2 and corresponds to the usual KT one for a given
η. Whenη → 1

2, the KT temperatureTKT → 0, meaning that vortices tend to proliferate
already at very low temperature. This result is not surprising at all, because at the Lifshitz
point, every configuration verifying

∑
plaquetteSi = 0 is allowed, so in particular vortices.

Let us now concentrate on the frustrated phase. We have seen that the action decomposes
into a massive part (18) plus a Coulomb gas part (21). Let us first consider this non-trivial
part. We can transform the vortex action in the frustrated phase on a Coulomb gas with
three species can be encountered when we study the XY model with random phase-shifts
(H = −J∑〈r,r ′〉 cos(θr−θr ′ −A〈r,r ′〉)). The standard method used to take into consideration
the randomness (represented here by the random fieldA〈r,r ′〉) is to replicatep times the
Coulomb gas [20] and to generalize the KT equations using the appropriate language for
Coulomb gas. Let us consider the case ofp replicas of the Coulomb gas described by

AV =
∑
r 6=r′

∑
i,j

mi(r)Cijmj (r′) ln
|r − r′|
a
+
∑
r,i

logzimi(r)
2 (24)

where |r|2 = x2

1−λ + y2

1+λ because of anisotropy, andC is the matrix(p × p) of coupling
constants. As usual, we will only take charge of modulus one, but we will keep the|m|
as variables for notations. As was first noticed by Korshunov [20], the interaction between
different replicas is of great importance because it hides a part of disorder. In our case,
we also have this intervortex species coupling, which is not present in the ferromagnetic
phase. This may also indicate a disordering of our initial ground state by all these vortices
excitations. The generalization of the KT equations for this model is given in the appendix B
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using real-space renormalization. The result is as follows:

dCij
dl
= − (2π)2√

1− λ2
m2
∑
k

(zk)
2CikCkj

dzk
dl
= (2− Ckkm2)zk

(25)

wherem2 is equal toπ2 here. Our case corresponds to a 3× 3 matrix,Cij , whose initial
conditions are defined from equation (21).z1 is the fugacity associated toN vortices,z2 to
L vortices and finallyz3 to M vortices defined in (21).

Note that the terms, coupling different vortex types, can provide fugacities associated to
hybrid vortices (configurations in which vortex of different species reside at the same site)
[21]. We have three possible hybrid vortices in our case. For simplicity and readability, we
have not presented the more general study which incorporates these three hybrid fugacities.
The KT equations can be generalized in a straightforward way following [21]. We have
checked that this does not alter the forthcoming results, but on the contrary enforces them.

3.2. Discussion of a possible phase diagram

Before discussing a possible phase diagram, we will study carefully the flow associated
with equation (25) based only on the KT order parameter.

Let us first see that we recover the singularity(λ = 1) as in the non-frustrated case but
this time in the denominator. Hence, the two ground states do not have the same behaviour
when the singularity is approached. This is not so surprising because their symmetry
is different. This has already been noticed and studied with quantum fluctuations with
Heisenberg antiferromagnets in [1]. In the first block of equations, we have six variables
obeying initial conditions (see equation (25)) despite our model having only two parameters
(β andλ). In fact, initially C33, the inverse temperature associated to type 3 vortices, equals
zero, so because of the nature of the equation governing its behaviour,C33 remains zero.
Taking care of the initial conditions (we work at low fugacities), we can study numerically
the flow of renormalization coupling constants (it is in fact much more convenient to use
the inverse of theCij ).

We will consider the generic caseJ2 = J1 = 1. We will especially follow the fugacities
with temperature and compare it to the usual KT flow (the physical temperature corresponds
to C−1

11 in order to recover the KT flow whenλ = 0). The associated fugacity,z1,
corresponds to vortices on the antiferromagnetic lattices. In figure 3, we have represented
the fugacityz1 function of the temperatureT . We see that for low-temperature and low-
fugacity initial conditions we do not recover the usual expected KT fixed point despite the
strong cross-over regime! We have checked numerically that this result is independent of
initial conditions, namely it is valuable even at very low fugacity. How shall we interpret
such a puzzling result? In figure 4 we have represented the evolution of fugacitiesz2 and
z3 with T (z2 is the fugacity associated to ferromagnetic (F) 1× 1 vortices andz3 to mixed
(F–AF) 1×√2 vortices). They are driven in a high-fugacity domain. This can be directly
correlated to the evolution of their associated temperatureC−1

22 andC−1
33 . Indeed, in figure 5,

the coupling constants,Cij are represented. We observe thatC22 goes towards zero, whereas
C33 remains zero (see above), meaning that the system is driven in a strong coupling regime
for vortices of type 2 and 3. The most important thing is that the coupling constant,C13,
remains finite (it couples the type 1 vortices to the type 3 vortices). Hence, the disorder
caused by type 2 and 3 vortices is strong enough to eliminate the usual KT fixed point. To
check this, in figure 6 we have shownz1(T ) and z2(T ) at z3 = 0. The KT fixed point is
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Figure 3. The RG system (25) is solved atJ2 = J1 = 1 and low fugacities. We have represented
the evolution of the fugacity,z1, with temperature,T , defined byT = C−1

11 . The main feature
is that the KT fixed point is lost.

Figure 4. The full curve represents the evolution of the fugacity,z2, with the temperature
T = C−1

11 whereas the broken curve represents the fugacity,z3. They are driven to a high-
density regime that will disorder the usual KT fixed point.

then recovered. Hence, the KT fixed point is suppressed essentially by type 3 vortices. This
can be seen geometrically: when we built a vortex around a 1× 1 plaquette, the AF order
on diagonal sublattices is not roughly affected, contrary to the case of 1×√2 plaquettes.
As λ ∼ C22

C11
→ 0 in the infrared limit (see figure 5), the two sublattices try to decouple

each other as already observed in the case for Heisenberg spins [2]. When both sublattices
are weakly coupled, it becomes easier (geometrically and energetically) to form a vortex of
type 2 or 3 from the collinear ground state. So, it is not surprising that such vortices are led
in a high-density regime whenλ→ 0. However, the fact that it is sufficient to destabilize
the KT fixed point for both sublattices is unexpected.
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Figure 5. The evolution of some coupling constantsCij . The full curve represents the evolution
of C22 with the temperatureT = C−1

11 . The fact thatC22 → 0 can be interpreted as the
decoupling of both AF sublattices. But, this also indicates a strong coupling regime associated
to C−1

22 , the ‘temperature’ associated to type 2 vortices. The short broken curve represents the
evolution ofC12 with T . C12 corresponds to the coupling between type 2 and type 1 vortices.
Finally, the long broken curve represents the evolution ofC13 with T . C13 converges toward a
finite value explaining why type 3 vortices are able to disorder the expected KT fixed point for
type 1 vortices. The curveC23(T ) is rather similar thanC13(T ) so has not been represented.

Figure 6. We have now enforced the fugacity,z3, to stay at 0. The full curve represents the
evolution of z1 with T , whereas the broken curve corresponds to the evolution ofz2 with T .
The KT fixed point is recovered. This plot shows the aim of the role played by type 3 vortices.

We see in figure 3 that we have a strong cross-over regime associated to the fugacityz1

as long asT < πJ2
2 . This could play a role as we will see later. ForT > πJ2

2 we recover
the usual UV fixed line, proving that the field theory has meaning.

We now have a consistent interpretation of the flow (figures 3–6) where only the role
of vortices was discussed. We must now take both order parameters into account for a
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global analysis of thisJ1 − J2 model. Indeed, equation (18) describes a massive scalar
theory associated with the Ising transition. We notice that whenJ2

J1
increases, the mass

proportional to( J1
2J2
)2 decreases meaning that the critical temperature associated with this

Ising transition reaches its maximum value whenJ2 = J1
2 . This is already the case for

Heisenberg spins, where only the Ising order parameter is present [2]. So equation (18),
based on spin-waves analysis, predicts a low-temperature phase with a global collinear
ordering. In this approach, we have decoupled both order parameters. It is clear that
they are correlated; the numerous numerical and analytical works on the fully frustrated
XY model on a square lattice, the AF triangular XY model and so on, which also have a
Z2×U(1) symmetry, have proved this point [12, 13]. It has to be noted that in thisJ1− J2

XY model, the Ising order parameter emerges in a dynamical way (by ‘order by disorder’
effect) contrary to the models quoted above. So, it is not at all obvious to compare it and
to directly conclude that theJ1 − J2 model must have a critical line of Ising–KT type (as
it is often the case for such models). Nevertheless, the analysis made in this paper enables
us to eliminate somea priori possible scenarii.

Suppose we have two critical transitions,TKT andTIsing. The scenarioTKT < TIsing is
impossible because we have seen that the usual KT fixed point is destabilized. In that case
we would have no transition at all, only a disordered ground state even at low temperature. It
would contradict the results of classical (and quantum) spin waves, that are usually valuable
at very low temperature. Moreover, Henley [10] has found numerically an ordered collinear
phase at lowT .

On the contrary, if an Ising transition occurs first (this supposes we have a collinear
ordered phase at lowT ), the ground state atT > TIsing would consist of domain walls
with global orientation cos(φ) = ±1. If the associated Ising correlation length (the size
of a domain wall) is large enough, we could apply the result to equation (25) inside each
domain wall. Hence, vortices of type 2 and 3 are able to suppress the KT fixed point,
so only one fixed point of Ising type separating a collinear and a disordered phase occurs.
Yet, if the correlation length is not large enough, then the cross-over associated with type 1
vortices could play an important role. In that case, we recover approximately the KT low-
temperature behaviour for a type 1 vortex, namely they tend to bind at this scale. So it
is not unusual to have a KT transition atT > TIsing. Nevertheless, the study of models
with Z2×U(1) order parameters tend to show (it is not yet completely clear) that the Ising
transition could ‘trigger’ the KT transition.

Different mechanisms have been proposed, notably a screening effect caused by domain
walls [13]. In our case, we would have to include these domain-wall effects plus the disorder
implied by type 2 and 3 vortices. It is plausible to think that all these effects will enforce the
unboundness of type 1 vortices just after the Ising transition has occurred. In that case, the
staggered magnetization would have the sign of KT behaviour and we would also find one
fixed point of Ising–KT type. The present analysis does not enable us to decide between
these last two possibilities (Ising or Ising–KT). It seems that the Ising order parameter plays
the most important role that could be checked by accurate numerical simulations. As very
few simulations cover this model, it is difficult to be conclusive. Henley [10] has made a
study of this model in the presence of dilution (that selects anticollinear ordering). They
predict for the caseJ2 = J1 = 1 only one transition atT = 0.97 separating a collinear and a
disordered ground state. The precise nature of this transition was not discussed numerically.
This result enforces both possible scenarii proposed above. In that case, we would obtain in
the (T , J2

J1
) plane the schematic phase diagram presented in figure 7. In the non-frustrated

phase we have a line of KT type separating a ferromagnetic phase by a disordered one
as we have seen above. Whereas in the frustrated phase, we have a curve separating a
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Figure 7. A schematic phase diagram in the plane(T , J2
J1
). The nature of the curve separating

the collinear order phase from the disordered one remains of Ising or Ising+KT type. The results
have been extrapolated close to the Lifshitz point where this analysis fails.

collinear order from a disorder phase. So, the exact nature of this transition remains to be
investigated in more detail by another approach enabling the coupling of the Ising and KT
order parameters.

4. Conclusion and outlook

In this paper, we have studied an XY model with ferromagnetic NN interactions and AF
NNN interactions. In the ferromagnetic phase, we show that the only relevant vortices are
the usual ones, leading to a KT transition atTKT = πJ1

2 (1− 2J2
J1
). The frustrated phase is

much richer. By ‘order by disorder’ effect, an Ising order parameter associated to a collinear
ground state is generated dynamically. Hence, the symmetry group becomesZ2 × U(1).
We have treated both order parameters in an independent way. The greater part of the paper
was devoted to a generalization of the KT equations in the collinear phase. Three types of
vortices were identified. We have thus found that the expected KT fixed point associated
to one type of vortex is suppressed due to the presence of the other vortices, which are
driven to a high-fugacity regime. Nevertheless, a strong cross over was marked. The
analysis, based on the Ising order parameter, forecasts a low-temperature phase dominated
by a collinear alignment. By comparing both approaches, it seems that only two scenarii
are possible: an Ising transition line or an Ising–KT transition separating the collinear from
the disordered phase. The nature of the transition requires a different approach able to take
into consideration the coupling between both order parameters. A possibility is to include a
coupling between spin waves and vortices. Some attempts in this direction have been done
by Benakliet al [22] for another model. It would also be interesting to include some disorder
effects in this model, notably by adding random-phase shifts. With the non-frustrated phase
being of the same universality class as the usual XY model, it is reasonable to think that
the results of [20] would apply in the ferromagnetic phase. Yet, in the frustrated phase, the
question is far from being trivial. We can show that disorder, like dilution[10], favours an
anticollinear order, so it offers the possibility to suppress the Ising order parameter for high
disorder even at low temperature. This will be a subject of future work.
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Appendix A

In this appendix, we transform the Villain actionAV defined in (19) into a Coulomb gas
one. The action then reads

AV = −βJ2

2

∑
x

(∇µθ2− 2πnµ2 (x))
2+ λ((∇xθ2)

2− (∇yθ2)
2)

+4πλ[(∇xl12)− (∇yl22)] + 4π2λ[(l12)
2− (l22)2] (A1)

The integration overθ2 is now easy,

AV = 2π2βJ2

∑
x

[∇µnµ2 (x)+ λ(∇xl12 −∇yl22)]P−1[. . .]

−2π2βJ2(n
µ

2 )
2− 2π2βJ2λ((l

1
2)

2− (l22)2) (A2)

with P−1 = [(∇x)2(1+ λ) + (∇y)2(1− λ)]−1, corresponding to an isotropic propagator.
Then we develop and introduce vortex variables (N(x) = εµν∇µnν2 andL(x) = εµν∇µlν2),

AV = −2π2βJ2

∑
x

N(x)P−1N(x)− λ2L(x)P−1L(x)

+λ[(∇µl12 −∇xnµ2 )P−1(∇µl12 −∇xnµ2 )]
−λ[(∇µl22 −∇ynµ2 )P−1(∇µl22 −∇ynµ2 )]. (A3)

The last term describes local and non-local vortices that are a mixture ofn and l bounds.
Let us introduceM(x) = ∇1n2

2−∇2l12 and also

M ′(x) = ∇1l22 −∇2n1
2 = L(x)+N(x)−M(x)

the local vortices built withl links (so associated with the ferromagnetic interaction
originally) and n links AF interactions. We can write the last two terms of the action
with M(x) andM ′(x), the non-local vortices having only short-range interactions. This can
be seen more rigorously (following the same treatment as in section 3.1) if we introduce
adapted triangular vortices and use the gauge conditionsl12(x) = l22(x). It leads to

AV = −2π2βJ2

∑
x

N(x)P−1N(x)− λ2L(x)P−1L(x)− λM(x)P−1M(x)

+λM ′(x)P−1M ′(x). (A4)

SinceM ′(x) = L(x)+N(x)−M(x), we finally obtain the action (21).

Appendix B

In this appendix we want to renormalize, in real anisotropic space, a replicated Coulomb
gas. Let us consider the grand-partition function associated with equation (25),

Z =
∑

n1,...,np

z
2n1
1 . . . z

2np
p

(n1!)2 . . . (np!)2

∫
D
p

2np

. . .

∫
D1

2n1

d2r2n1,1 . . .

∫
D1
α1

d2rα1 . . .

∫
D1

1

d2r1,1

× exp

[∑
i,j

∑
αi ,βj

mαiCijmβj log
|rαi − rβj |

a

]
. (B1)
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In this expression, we have generalized the notations of Kosterlitz [8]. We have used also
the norm |r|2 = x2

1−λ + y2

1+λ which takes the anisotropy into account. The order of the
integration is fixed andDk

αk
is the whole plane except for the ellipses|rαk − rβl | < a, with

l > k, or l = k andβl > αl . To fix notations, we writemαi for the αth vorticity of the
ith replica (here we take only vortex charges±1, hence with the normalizations it gives
m2 = π

2 ), with Latin indices standing for replica and Greek indices for vortices inside a
replica. As in the Kosterlitz derivation, the final result will not depend on the ordering.
The idea is now to scale the lattice spacing fora to a + da and to integrate explicitly the
contribution from vortex–antivortex pairs (i.e. withmαk = −mβk ) in the same replica whose
relative coordinates lie within an elliptical annulus of radius da. Now we have just to follow
the same procedure as the Kosterlitz one inside each replica. We rearrange the integral as
follows∫
D
p

2np

. . .

∫
D1

1

d2r1,1 =
∫
D
′p
2np

. . .

∫
D′11

d2r1,1+ 1
2

∑
k

∑
αk 6=βk

∫
D
′p
2np

. . .

∫
D′k2nk

. . .

∫
D′kαk+1

×
∫
D′kαk−1

. . .

∫
D′kβk+1

∫
D′kβk−1

. . .

∫
D′11

d2r11

∫
D̄k
αk

d2rαk

∫
δkβk
(αk)

d2rβk (B2)

whereD′ is defined as forD with α→ a+da, D̄k
αk

the plane without elliptical disk around
all other points andδkβk (αk) the annulus defined bya < |rαk − rβk | < a + da. So we have
to compute∫
δkβk
(αk)

d2rβk exp

(
2
∑
l,γl

Clk
[
mαkmγ l log

|rαk − rγ l|
a

+mβkmγ l log
|rβk − rγ l|

a

])
(B3)

paying attention to the anisotropy.
We putρ = rαk − rβk , then|ρ| ∼ a according to our norm. If we requiremαk = −mγl ,

we have to calculate∫
δkβk
(αk)

d2rβk

∏
l,γ l

([
1+ 2ρ · (rαk − rγ l)

|rαk − rγ l|2
+ a2

|rαk − rγ l|2
]Cklmαkmγ l)

. (B4)

The integrations are now formally identical with those of Kosterlitz (the difference lies
within the scalar product associated to the norm so will not affect the coupling constant)
except the surface element which reads2πa da√

1−λ2 . Using the derivation of Kosterlitz the grand-
partition function then yields:

Z =
∑

n1,...,np

z
2n1
1 . . . z

2np
p

(n1!)2 . . . (np!)2

∫
D
′p
2np

. . .

∫
D′12n1

d2r2n1,1 . . .

∫
D′11

d2r1,1

×
[

1+
∑
k

z2
k

2πa da√
1− λ2

(
A−2πa2

∑
l,l′
CklCkl′m2

∑
βl 6=βl′

mβlmβ ′l log
|rβl−rβ ′l |

a

)]
× exp

[∑
i,j

∑
αi ,βj

mαiCijmβj log
|rαi − rβj |

a

]
. (B5)

By using the fact that we work with da � a we can exponentiate the second line and see
that the coupling constant renormalize as

Cll′ → Cll′ − (2π)2√
1− λ2

m2 da

a

∑
k

(zk)
2ClkCkl′ . (B6)
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It still remains to renormalize the fugacity. We use

log
|rαi − rβj |

a
∼ log

|rαi − rβj |
a + da

+ da

a
.

Because of charge conservation inside each replica, only the coupling constant of the type
Cll will play a role as in the standard case. So, we have the usual renormalization equation
for zl

zl →
(

2− Cllm2 da

a

)
zl. (B7)

The equations (B6) and (B7), describing the RG flow, have the same form as the one
obtained by Scheidl [20].
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